
Hilbert’s Tenth Problem
Determining the Solvability of

Diophantine Equations

Hilbert’s Problems
● In 1900, Hilbert published a list of 23 problems which were supposed to

be some of the most important problems at the time – i.e. problems that
the 19th century had left for the 20th century to solve

● The first problem (concerning geometry) was solved in 1900 itself using
Dehn Invariants

● Today, only 3 of them are unsolved* (one of them being the Riemann
Hypothesis)

Hilbert’s Tenth Problem

“Given a Diophantine equation with any number of
unknown quantities and with rational integral numerical
coefficients: To devise a process according to which it
can be determined in a finite number of operations
whether the equation is solvable in rational integers.”

Diophantine Equations
● Polynomials in any number of variables with only integral coefficients
● D (x1, x2… xn) = 0
● Considered solvable if it has integral solutions

Turing Machines
● We ask our Turing Machines yes/no questions, or questions of the form

‘does this input belong to a set S in Σ*’
● Given some input, there are 3 possibilities: The program says ‘yes’, the

program says ‘no’, or the program never terminates
● A set S is called semi-decidable or recursively enumerable if there exists a

Turing Machine which terminates and says ‘yes’ whenever the input
belongs to S. It may or may not terminate otherwise

● A set S is called decidable or recursive if both S and the complement of S
are decidable

● Church-Turing Thesis: Any ‘effectively computable’ function (in the
intuitive sense) is a computable function (in terms of Turing Machines)

Hilbert’s Tenth Problem is Semidecidable
● List of all possible n-tuples can be generated one-by-one
● Check if each one works
● If there is a solution, we will eventually find it and the machine will halt.

Hilbert’s Tenth Problem

● Hilbert’s 10th problem took 70 years to solve and was the work of mainly
4 mathematicians – Yuri Matiyasevich, Julia Robinson, Martin Davis, and
Hilary Putnam* (the main result in the proof is often called the MRDP
theorem after their initials). They proved that there was no such ‘process’!
(i.e. it is an undecidable problem).

● Completely elementary proof!

Martin Davis, Julia Robinson, Yuri Matiyasevich

Diophantine Equations
Observation 1: Determining whether a system of Diophantine equations is
solvable is equivalent to determining whether a single Diophantine equation is
solvable

D1(x1, …xm) = 0, & … Dk(x1,…xm) = 0 has a solution ⇔ D1^2(x1, … xm) … +
Dk^2(x1,…xm) = 0 has a solution

Diophantine Equations
Observation 2: It is sufficient to find a method to decide whether a
Diophantine equation of degree 4 has a solution

● Introduce new variables and get a system of equations of the form where
each equation is of the form a = b+c and a = bc

● Convert to a single equation

Diophantine Equations
Observation 3: We may restrict to non-negative solutions only

● Reducing from integral to non-negative: D(x1, x2… xn) = 0 has an integral
solution ⇔ D(a1-b1, a2-b2…an-bn) = 0 has a non-negative solution

● Reducing from non-negative to integral: D(x1, x2, …xn) = 0 has a solution
⇔ D(x1, x2…xn) = 0 & x1= a1^2 + b1^2+c1^2+d1^2 … & xk=an^2 +
bn^2+cn^2+dn^2 has a solution (from Four-Square Theorem)

Four-Square Theorem: Every nonnegative
integer can be represented as a sum of
four non-negative integer squares

Diophantine Sets
● A parametric Diophantine Equation is a Diophantine Equation D(a1, a2…an,

x1, x2… xm) where the variables are separated into parameters a1, a2… an and
unknowns x1, x2… xm

● By fixing the parameters, we get Diophantine Equations in m variables which
can be either solvable or unsolvable depending on the values of the parameters

● Hence, there is a set M ⊂ N^n associated with every parametric Diophantine
equation in m parameters = set of n-tuples (a1, a2… an) ⊂ N^n such that D(a1,
a2… an, x1, x2…xm)=0 is solvable

● Such a set is said to be a Diophantine Set of dimension n, and the
corresponding equation is the Diophantine Representation of it

● We can also define Diophantine Properties, Diophantine Relations and
Diophantine Functions

● Q: Which subsets of N^n are Diophantine?

Diophantine Sets
Example 1: The property of being an even number is Diophantine (similarly
for odd)

Example 2: The relation <= is Diophantine

Example 3: The relation =/= is Diophantine

Diophantine Sets
Property 1: Diophantine Sets are closed under Union

Property 2: Diophantine Sets are closed under Intersection

Property 3: Diophantine Sets are closed under Projection

We can also use Diophantine functions as terms

Q: Are Diophantine Sets closed under complementation?

Diophantine Sets
Example 4: The function rem(b,c) is Diophantine

Example 5: Divisibility, the congruence relation with respect to a certain
modulus, and the function div(b,c) are Diophantine

Example 7: gcd and lcm are Diophantine

MRDP/Matiyasevich’s Theorem

The class of Diophantine Sets is precisely the
class of Turing Semidicable Sets

Cantor Encoding
● Want to encode sequences of numbers
● We can encode pairs as follows: (0,0), (0,1), (1,0),

(0,2), (1,1)... = 0, 1, 2, 3, 4 … resp.
● i.e. (a,b) is encoded as Cantor (a,b) = ((a+b)^2 +

3a + b)/2
● Retrieving the elements:

○ a = Elema(c) ⇔ ∃b s.t. ((a+b)^2 + 3a + b) = 2c
○ b = Elemb(c) ⇔ ∃a s.t. ((a+b)^2 + 3a + b) = 2c

● Cantor, Elema, and Elemb are Diophantine
functions

Cantor Encoding
● Can encode (a1, a2, … an) as a single number :

Cantor_n (a1, a2… an) = Cantor (a1, Cantor (a2,
Cantor (a3…. Cantor (an-1, an))))

● an = Elem n,m (c) ⇔ ∃a1, a2,... an-1, an+1,...am
s.t. 2^(2^n) Cantor (a1, a2…an) = 2^(2^n) c

● Each of Elem n,m is a different Diophantine
function. We want a single Diophantine function
Elem (n,m,c) -> use positional encoding instead!

Exponentiation is Diophantine…
● The function b^c is also Diophantine (not at all trivial! This was the last

piece of the proof)
● Assuming this fact, we can freely* use exponentiation in our equations

Positional Coding
● Let the code of a1, a2… an be the value of anan-1…a1 in some base b
● We will also include b, n in our code
● i.e. the positional code of (a1, a2…an) is Cantor_3

(a1b^0+a2b^1+...+anb^n-1, b, n)
● Given some code (a,b,c) we can retrieve the dth element of the tuple via e

= Elem (a,b,d) ⇔ ∃xyz s.t. [d=z+1 & a=x^d+eb^z+y & e<b & y<b^z]
● We now know that these are Diophantine Functions

Positional Coding
We can now easily show the following functions are Diophantine!

● nCm
● m!
● Prime(a)

Positional Coding
We can now easily show the following functions are Diophantine!

● nCm: From binomial theorem, ((b+1)^n, b , n+1) is the positional code of
(nC0, nC1, … nCn) for sufficiently large b

● m! = lim_n->inf n^m/(nCm). Use div on sufficiently large n
● Prime(a) ⇔ a>1 & gcd (a,(a-1)!)=1

Diophantine Representation of Primes

● D (a, x1, …xm) = 0 has a solution ⇔ (x0 + 1)(1-D^2(x0, …, xm))-1 = a has a
solution

*Degree 25 Polynomial in 26 variables (- every letter of the alphabet)

Positional Coding
Using the prime function, it is now possible to construct the following
Diophantine functions:

● Checking if a given code(a,b,c) is valid: a<b^c and b>=2
● Concatenation of codes
● Checking if two codes encode the same tuple
● Repeat (a, b, n) = a(b^c-1)/(b-1)
● Applying function on every element of a tuple: given Diophantine function

F in m arguments, we can construct F[beta] s.t. F[beta](p1, p2… pn, c) =
(F(p_11, p_21, … p_n1), …, F(p_1m, p_2m,... p_nm))

Connection to Other Problems

We can now see that a positive solution to Hilbert’s Tenth Problem would
allow us to resolve all of these*:

● Fermat’s Last Theorem: (p+1)^(s+3) + (q+1)^(s+3) = (r+1)^(s+3) has no
solutions

● Catalan’s Conjecture: The only consecutive powers of natural numbers are
8 and 9

● Using Bounded Universal Quantifiers, one can also show that the
Goldbach Conjecture and Riemann Hypothesis are special cases of
Hilbert’s Tenth Problem

Connection to Other Problems– Goldbach Conjecture

● 2a+4 cannot be expressed as the sum of two primes ⇔ ∀z<a+1 ∃xy
(z+2=(x+2)(y+2) ∨ 2a+2-z = (x+2)(y+2))

● Then, ∃a∀z<a+1 ∃xy (z+2=(x+2)(y+2) ∨ 2a+2-z = (x+2)(y+2)) is a single
Diophantine Equation which is solvable iff the Goldbach Conjecture is
false

Turing Machines
● Consists of a finite alphabet Σ = s0, s1,s2…sn, an infinite tape divided into cells (each

cell can store one letter), a set of ‘states’ Q = q1, q2…qn, and a ‘transition function’ = set
of instructions (= (A,Q,D): Q x Σ -> Σ xQx{L,S,R})

● We have an initial position on the tape
● We have an initial state and two halt states– one corresponding to ‘yes’ and one

corresponding to ‘no’
● s0 is special ‘empty’ symbol and * is left end-marker
● The input to the Turing Machine is some finite string written on some portion of the

tape
● At each step, our Turing machine looks at the alphabet in the cell it is in, and the state

it is in, and uses the transition function to determine which state to go to, what to
rewrite on the cell, and whether to move the tape head to the left, to stay in the same
position, or move to the right

● Input corresponding to (a1,...an) = <*, 0, 1, 1., 1, 0, 1,1 …1, 0, … 0, 1,1 …1>

Semidecidable Sets are Diophantine
● Let the Turing Machine T have number of states = v and alphabet size = w
● At any point in the computation, the current configuration of the Turing

Machine can be represented using two tuples:
○ (s1, s2,...sm,...sl-1, sl), the Tape tuple; contains the current tape contents
○ (0, 0,...i,...0, 0) is the Position tuple; stores current position (location of i) and i (current

state)

● Use positional coding in some base beta, with beta > v, w
● Goal: To construct a Diophantine equation D(p, t, x1,...xm) = 0 such that

for valid p, t, the equation is solvable iff T halts with initial configuration
given by p, t

Semidecidable Sets are Diophantine
● Want to construct NextT(p,t) which gives Tape tuple one step later:

○ Let A(i,j) = alphabet given by transition function if 0<i<=v, 0<=j<=w are valid
(piecewise-Diophantine equations are diophantine), else j (if i = 0)

○ t’ = NextT(p,t) ⇔ ∃w[t’=A[beta](p,t,w)]

● Want to construct NextP(p,t) which gives Position tuple one step later:
○ Let pR = pbeta, pL = p div beta, tR = tbeta, tL = t div beta (i.e. tuples shifted* one to the left

or right)
○ Construct function DQ similar to A above but which takes in as input current position in p,

t, and elements to the left and right in p, t
○ p’ = NextP(p,t) ⇔ ∃w[p’ = DQ(beta)(p_beta, p, p div beta, t beta, t, t div beta, w)]

Semidecidable Sets are Diophantine
● Want to define iterated Next i.e. AfterP(k, p, t) and AfterT(k, p, t)

● If we choose l such that p, t < beta^l-k-2, then we know that currently
<= l-k-2 cells are filled and in k steps, < l cells will be filled, so we can
choose l as size of all our codes

● Construct ‘super-configuration’ pL, pR, pM, tL, tR, tM
● Consider this ‘super-machine’ with multiple tape heads. Can use same

NextP, NextT functions to find next configuration on the
super-machine

● Codes of size kl or (k-1)l

Semidecidable Sets are Diophantine
● p’ = AfterP(k,p,t) and t’ = AfterT(k,p,t) ⇔ ∃l, pL, pR, pM, tL, tR, tM s.t.

○ p, t < beta^l-k-2
○ pR = NextP (pL, tL)
○ tR = NextT (pL, tL)
○ <pL, beta, kl> = <p, beta, l> + <pM, beta, (k-1)l>
○ <pR, beta, kl> = <pM, beta, (k-1)l> + <p’, beta, l>
○ (analagous statements for t)
○ p’, t’ < beta^l

Semidecidable Sets are Diophantine
● D we wanted to construct; set of (p,t) on which T halts: ∃k, r s.t.

[Elem(AfterT(k,p,t), beta, r) = final_state]
● Initial configuration:

○ p = <1, 0, 0, ...> = 1
○ t = <*, 0, 1, … 1, 0, 1…, 1… 0, 1,... ,1>
○ <t, beta, a> = <*, beta, 1> + <0, beta, 1> + <Repeat(1, beta, a_1), beta, a_1> + <0, beta, 1>

+... + <0, beta, 1> + <Repeat(1, beta, a_n), beta, a_n>

● Final function: combine the above three equations

Halting Problem
● Q: Is the problem of determining when a machine halts decidable?

Halting Problem is semi-decidable: We can construct a ‘Universal Turing
Machine’ which takes as input a Turing Machine T and a word w, simulates the
running of T on w, halts if T halts on w and returns the output of T on w.

Halting Problem
Halting Problem is not decidable:

● Suppose the Halting Problem is decidable i.e. there is a Turing Machine
which takes as input T, w and returns ‘yes’ if T halts on T and ‘no’
otherwise

● Then, there is a Turing Machine H which takes as input T and returns ‘yes’
if T halts on w = T and ‘no’ otherwise

● Then there is a Turing Machine J which takes as input T and does not halt
if T halts on w = T and halts if T halts on w = T

● Does J halt on itself?

Undecidability of Solvability of Diophantine Equations
● Consider a semidecidable set S whose complement is not semidecidable
● S is Diophantine, hence there exist a class of Diophantine equations

parametrized by a which are solvable iff a in S
● Since the complement of S is not semidecidable, there does not exist an

algorithm to determine whether even Diophantine Equations from this
class are solvable

…Exponentiation is Diophantine
● Finding one example of Julia Robinson Predicates would be enough to

complete the proof
● She considered using Pell’s Equations:

○ x^2-(a^2-1)y^2=1
○ Solutions (pi, qi) satisfy the recurrence relation

■ p_i+1 = 2a_p - p_n-1
■ q_i+1 = 2a_q - q_n-1

○ The sequences p_i, q_i are periodic modulo any m, and hence so are their linear
combinations

○ q_0, q_1… mod (a-1) is periodic with 0, 1, 2… a-2
○ q_0 - (a-2)p_0, q_1 - (a-2)p_1… (mod 4a-5) is periodic with start 2^0, 2^1, 2^2…
○ She showed that if one could find an infinite Diophantine set of a such that the length of

the first period is a multiple of the second, then one would have an example of Julia
predicates

…Exponentiation is Diophantine
● This approach has not yielded any solutions, but Matiyasevich was

inspired by this idea of synchronization of periods to consider the related
sequence of Fibonacci Numbers at even positions

● Fibonacci Numbers satisfy a_0 = 0, a_2 = 1, a_2i+2 = 3a_2i - a_2i-2
● Sequence grows like ((3+√5)/2)^n, can show that 2^u-1 < u_2i < 3^u
● Hence, they satisfy J.R.
● Remains to show that the equation is Diophantine

…Exponentiation is Diophantine
● The only solutions to x^2 - y^2 - xy = +-1 are consecutive Fibonacci

Numbers (can be proved via induction). x^2-y^2-xy = 1 gives x = a_2i+1,
y=a_2i, and x^2-y^2-xy = -1 gives x = a_2i, y=a_2i-1

● Can generalise Fibonacci numbers a_n to phi_m,n given by :
○ phi_m,0 = 0, phi_m,1 = 1, phi_m+1, k = mphi_m,k - phi_m,k-1
○ Which have a similar property for the equation x^2-mxy+y^2=1

● This equals even position Fibonacci numbers for m = 3

…Exponentiation is Diophantine
● Fibonacci Numbers satisfy a_n^2|a_m => a_n|m, which provides some

sort of relation between a Fibonacci Number and its index
● He also established some lemmas in modular arithmetic:

● Using these properties, he was able to come up with a short list of
necessary and sufficient conditions for v = a_2u

…Exponentiation is Diophantine

…Exponentiation is Diophantine

Universal Diophantine Equations
Another result proved by Julia Robinson and Yuri Matiyasevich was that of the
existence of Universal Diophantine Equations with number of unknowns
bounded for Diophantine Sets of any Dimension.

● A Universal Equation has the form U(a1,... an, k1,… kl, y1,… yw) = 0 where
a1,... an are called element parameters and k1,... kn are called code
parameters

● It satisfies the property that for any parametric equation D(a1,...an,
x1,...xm), there exists a ‘code’ (k1,...kl) corresponding to D such that
U(a1,...an, k1,...kl, y1,...yw) when fixing (k1,...kl) and regarded as a
parametric Diametric equation with parameters a1,...an and unknowns
y1,...yw, yields exactly the Diophantine Set as D!

Universal Diophantine Equations
● Analogue to ‘Universal Turing Machine’
● It’s easy to see that we can have l=1 by using Cantor Encoding
● But it is also possible to bound w!
● Matiyasevich initially made a rough estimate of 200 unknowns, but they

later brought this down to 13 and eventually 9.

Open Problems
● Is Hilbert’s Tenth Problem reducible to its restriction to equations of

degree 3? Is solvability of Diophantine Equations of degree 3 decidable?
(We know that it is decidable for degree 2 and we have shown that it is
undecidable for degree 4)

● Do there exist constants d and m such that for every n one can construct
a universal equation with n element parameters, a single code parameter,
m unknowns, and total degree w.r.t all the variables equal to d i.e.
Universal Diophantine Equations bounded in degree?

Extension of Hilbert’s Tenth Problem
“There has been much work on Hilbert's tenth problem for the rings of
integers of algebraic number fields. Basing themselves on earlier work by Jan
Denef and Leonard Lipschitz and using class field theory, Harold N. Shapiro
and Alexandra Shlapentokh were able to prove:

‘Hilbert's tenth problem is unsolvable for the ring of integers of any algebraic
number field whose Galois group over the rationals is abelian.’”

References
● ‘Hilbert’s Tenth Problem’ by Yuri V. Matiyasevich
● Yuri Matijasevic, "Diophantine Representation of Enumerable Predicates,"

Izvestija Akademii Nauk SSSTF.Serija Mathematiceskaja, 35 (1971), pp.
3-30. English translation: Mathematics of the USSR - Izvestija 5 (1971), pp.
1-28.

● ‘My Collaboration with Julia Robinson’ by Yuri Matiyasevich: Celebratio
Mathematica

● ‘Diophantine Representation of Fibonacci Numbers’ — James P. Jones,
University of Calgary

