
Hilbert’s Tenth Problem
Determining the Solvability of 

Diophantine Equations



Hilbert’s Problems
● In 1900, Hilbert published a list of 23 problems which were supposed to 

be some of the most important problems at the time – i.e. problems that 
the 19th century had left for the 20th century to solve 

● The first problem (concerning geometry) was solved in 1900 itself using 
Dehn Invariants

● Today, only 3 of them are unsolved* (one of them being the Riemann 
Hypothesis)



Hilbert’s Tenth Problem

“Given a Diophantine equation with any number of 
unknown quantities and with rational integral numerical 
coefficients: To devise a process according to which it 
can be determined in a finite number of operations 
whether the equation is solvable in rational integers.”



Diophantine Equations
● Polynomials in any number of variables with only integral coefficients
● D (x1, x2… xn) = 0
● Considered solvable if it has integral solutions



Turing Machines
● We ask our Turing Machines yes/no questions, or questions of the form 

‘does this input belong to a set S in Σ*’
● Given some input, there are 3 possibilities: The program says ‘yes’, the 

program says ‘no’, or the program never terminates
● A set S is called semi-decidable or recursively enumerable if there exists a 

Turing Machine which terminates and says ‘yes’ whenever the input 
belongs to S. It may or may not terminate otherwise

● A set S is called decidable or recursive if both S and the complement of S 
are decidable

● Church-Turing Thesis: Any ‘effectively computable’ function (in the 
intuitive sense) is a computable function (in terms of Turing Machines)



Hilbert’s Tenth Problem is Semidecidable
● List of all possible n-tuples can be generated one-by-one
● Check if each one works
● If there is a solution, we will eventually find it and the machine will halt.



Hilbert’s Tenth Problem

● Hilbert’s 10th problem took 70 years to solve and was the work of mainly 
4 mathematicians – Yuri Matiyasevich, Julia Robinson, Martin Davis, and 
Hilary Putnam* (the main result in the proof is often called the MRDP 
theorem after their initials). They proved that there was no such ‘process’! 
(i.e. it is an undecidable problem).

● Completely elementary proof!



Martin Davis, Julia Robinson, Yuri Matiyasevich



Diophantine Equations
Observation 1: Determining whether a system of Diophantine equations is 
solvable is equivalent to determining whether a single Diophantine equation is 
solvable 

D1(x1, …xm) = 0, & … Dk(x1,…xm) = 0 has a solution ⇔ D1^2(x1, … xm) … + 
Dk^2(x1,…xm) = 0 has a solution



Diophantine Equations
Observation 2: It is sufficient to find a method to decide whether a 
Diophantine equation of degree 4 has a solution

● Introduce new variables and get a system of equations of the form where 
each equation is of the form a = b+c and a = bc

● Convert to a single equation



Diophantine Equations
Observation 3: We may restrict to non-negative solutions only

● Reducing from integral to non-negative: D(x1, x2… xn) = 0 has an integral 
solution ⇔ D(a1-b1, a2-b2…an-bn) = 0 has a non-negative solution

● Reducing from non-negative to integral: D(x1, x2, …xn) = 0 has a solution 
⇔ D(x1, x2…xn) = 0 & x1= a1^2 + b1^2+c1^2+d1^2 … & xk=an^2 + 
bn^2+cn^2+dn^2 has a solution (from Four-Square Theorem)

Four-Square Theorem: Every nonnegative 
integer can be represented as a sum of 
four non-negative integer squares



Diophantine Sets
● A parametric Diophantine Equation is a Diophantine Equation D(a1, a2…an, 

x1, x2… xm) where the variables are separated into parameters a1, a2… an and 
unknowns x1, x2… xm

● By fixing the parameters, we get Diophantine Equations in m variables which 
can be either solvable or unsolvable depending on the values of the parameters

● Hence, there is a set M ⊂ N^n associated with every parametric Diophantine 
equation in m parameters = set of n-tuples (a1, a2… an) ⊂ N^n such that D(a1, 
a2… an, x1, x2…xm)=0 is solvable

● Such a set is said to be a Diophantine Set of dimension n, and the 
corresponding equation is the Diophantine Representation of it

● We can also define Diophantine Properties, Diophantine Relations and 
Diophantine Functions

● Q: Which subsets of N^n are Diophantine?



Diophantine Sets
Example 1: The property of being an even number is Diophantine (similarly 
for odd)

Example 2: The relation <= is Diophantine

Example 3: The relation =/= is Diophantine



Diophantine Sets
Property 1: Diophantine Sets are closed under Union

Property 2: Diophantine Sets are closed under Intersection

Property 3: Diophantine Sets are closed under Projection

We can also use Diophantine functions as terms

Q: Are Diophantine Sets closed under complementation?



Diophantine Sets
Example 4: The function rem(b,c) is Diophantine

Example 5: Divisibility, the congruence relation with respect to a certain 
modulus, and the function div(b,c) are Diophantine

Example 7: gcd and lcm are Diophantine



MRDP/Matiyasevich’s Theorem

The class of Diophantine Sets is precisely the 
class of Turing Semidicable Sets



Cantor Encoding
● Want to encode sequences of numbers
● We can encode pairs as follows: (0,0), (0,1), (1,0), 

(0,2), (1,1)... = 0, 1, 2, 3, 4 … resp.
● i.e. (a,b) is encoded as Cantor (a,b) = ((a+b)^2 + 

3a + b)/2
● Retrieving the elements:

○ a = Elema(c) ⇔ ∃b s.t. ((a+b)^2 + 3a + b) = 2c
○ b = Elemb(c) ⇔ ∃a s.t. ((a+b)^2 + 3a + b) = 2c

● Cantor, Elema, and Elemb are Diophantine 
functions



Cantor Encoding
● Can encode (a1, a2, … an) as a single number :

Cantor_n (a1, a2… an) = Cantor (a1, Cantor (a2, 
Cantor (a3…. Cantor (an-1, an))))

● an = Elem n,m (c) ⇔ ∃a1, a2,... an-1, an+1,...am 
s.t. 2^(2^n) Cantor (a1, a2…an) = 2^(2^n) c

● Each of Elem n,m is a different Diophantine 
function. We want a single Diophantine function 
Elem (n,m,c) -> use positional encoding instead!



Exponentiation is Diophantine…
● The function b^c is also Diophantine (not at all trivial! This was the last 

piece of the proof)
● Assuming this fact, we can freely* use exponentiation in our equations



Positional Coding
● Let the code of a1, a2… an be the value of anan-1…a1 in some base b 
● We will also include b, n in our code
● i.e. the positional code of (a1, a2…an) is Cantor_3 

(a1b^0+a2b^1+...+anb^n-1, b, n)
● Given some code (a,b,c) we can retrieve the dth element of the tuple via e 

= Elem (a,b,d) ⇔ ∃xyz s.t. [d=z+1 & a=x^d+eb^z+y & e<b & y<b^z]
● We now know that these are Diophantine Functions 



Positional Coding
We can now easily show the following functions are Diophantine!

● nCm
● m!
● Prime(a)



Positional Coding
We can now easily show the following functions are Diophantine!

● nCm: From binomial theorem, ((b+1)^n, b , n+1) is the positional code of 
(nC0, nC1, … nCn) for sufficiently large b

● m! = lim_n->inf n^m/(nCm). Use div on sufficiently large n
● Prime(a) ⇔ a>1 & gcd (a,(a-1)!)=1 



Diophantine Representation of Primes

● D (a, x1, …xm) = 0 has a solution ⇔ (x0 + 1)(1-D^2(x0, …, xm))-1 = a has a 
solution

*Degree 25 Polynomial in 26 variables (- every letter of the alphabet) 



Positional Coding
Using the prime function, it is now possible to construct the following 
Diophantine functions:

● Checking if a given code(a,b,c) is valid: a<b^c and b>=2
● Concatenation of codes
● Checking if two codes encode the same tuple
● Repeat (a, b, n) = a(b^c-1)/(b-1)
● Applying function on every element of a tuple: given Diophantine function 

F in m arguments, we can construct F[beta] s.t. F[beta](p1, p2… pn, c) = 
(F(p_11, p_21, … p_n1), …, F(p_1m, p_2m,... p_nm)) 



Connection to Other Problems

We can now see that a positive solution to Hilbert’s Tenth Problem would 
allow us to resolve all of these*:

● Fermat’s Last Theorem: (p+1)^(s+3) + (q+1)^(s+3) = (r+1)^(s+3)  has no 
solutions

● Catalan’s Conjecture: The only consecutive powers of natural numbers are 
8 and 9 

● Using Bounded Universal Quantifiers, one can also show that the 
Goldbach Conjecture and Riemann Hypothesis are special cases of 
Hilbert’s Tenth Problem



Connection to Other Problems– Goldbach Conjecture

● 2a+4 cannot be expressed as the sum of two primes ⇔ ∀z<a+1 ∃xy 
(z+2=(x+2)(y+2) ∨ 2a+2-z = (x+2)(y+2)) 

● Then, ∃a∀z<a+1 ∃xy (z+2=(x+2)(y+2) ∨ 2a+2-z = (x+2)(y+2)) is a single 
Diophantine Equation which is solvable iff the Goldbach Conjecture is 
false



Turing Machines
● Consists of a finite alphabet Σ = s0, s1,s2…sn, an infinite tape divided into cells (each 

cell can store one letter), a set of ‘states’ Q = q1, q2…qn, and a ‘transition function’ = set 
of instructions (= (A,Q,D): Q x Σ -> Σ xQx{L,S,R})

● We have an initial position on the tape
● We have an initial state and two halt states– one corresponding to ‘yes’ and one 

corresponding to ‘no’
● s0 is special ‘empty’ symbol and * is left end-marker
● The input to the Turing Machine is some finite string written on some portion of the 

tape
● At each step, our Turing machine looks at the alphabet in the cell it is in, and the state 

it is in, and uses the transition function to determine which state to go to, what to 
rewrite on the cell, and whether to move the tape head to the left, to stay in the same 
position, or move to the right

● Input corresponding to (a1,...an) = <*, 0, 1, 1., 1, 0, 1,1 …1, 0, … 0, 1,1 …1>



Semidecidable Sets are Diophantine
● Let the Turing Machine T have number of states = v and alphabet size = w
● At any point in the computation, the current configuration of the Turing 

Machine can be represented using two tuples:
○ (s1, s2,...sm,...sl-1, sl), the Tape tuple; contains the current tape contents
○ (0, 0,...i,...0, 0) is the Position tuple; stores current position (location of i) and i (current 

state)

● Use positional coding in some base beta, with beta > v, w
● Goal: To construct a Diophantine equation D(p, t, x1,...xm) = 0 such that 

for valid p, t, the equation is solvable iff T halts with initial configuration 
given by p, t



Semidecidable Sets are Diophantine
● Want to construct NextT(p,t) which gives Tape tuple one step later:

○ Let A(i,j) = alphabet given by transition function if 0<i<=v, 0<=j<=w are valid 
(piecewise-Diophantine equations are diophantine), else j (if i = 0)

○ t’ = NextT(p,t) ⇔ ∃w[t’=A[beta](p,t,w)]

● Want to construct NextP(p,t) which gives Position tuple one step later:
○ Let pR = pbeta, pL = p div beta, tR = tbeta, tL = t div beta (i.e. tuples shifted* one to the left 

or right)
○ Construct function DQ similar to A above but which takes in as input current position in p, 

t, and elements to the left and right in p, t
○ p’ = NextP(p,t) ⇔ ∃w[p’ = DQ(beta)(p_beta, p, p div beta, t beta, t, t div beta, w)]





Semidecidable Sets are Diophantine
● Want to define iterated Next i.e. AfterP(k, p, t) and AfterT(k, p, t)

● If we choose l such that p, t < beta^l-k-2, then we know that currently 
<= l-k-2 cells are filled and in k steps, < l cells will be filled, so we can 
choose l as size of all our codes

● Construct ‘super-configuration’ pL, pR, pM, tL, tR, tM 
● Consider this ‘super-machine’ with multiple tape heads. Can use same 

NextP, NextT functions to find next configuration on the 
super-machine

● Codes of size kl or (k-1)l



Semidecidable Sets are Diophantine
● p’ = AfterP(k,p,t) and t’ = AfterT(k,p,t) ⇔ ∃l, pL, pR, pM, tL, tR, tM s.t. 

○ p, t < beta^l-k-2
○ pR = NextP (pL, tL)
○ tR = NextT (pL, tL)
○ <pL, beta, kl> = <p, beta, l> + <pM, beta, (k-1)l>
○  <pR, beta, kl> = <pM, beta, (k-1)l> + <p’, beta, l>
○ (analagous statements for t)
○ p’, t’ < beta^l



Semidecidable Sets are Diophantine
● D we wanted to construct; set of (p,t) on which T halts: ∃k, r s.t. 

[Elem(AfterT(k,p,t), beta, r) = final_state]
● Initial configuration:

○ p = <1, 0, 0, ...> = 1
○ t = <*, 0, 1, … 1, 0, 1…, 1… 0, 1,... ,1>
○ <t, beta, a> = <*, beta, 1> + <0, beta, 1> + <Repeat(1, beta, a_1), beta, a_1> + <0, beta, 1> 

+... + <0, beta, 1> + <Repeat(1, beta, a_n), beta, a_n>

● Final function: combine the above three equations



Halting Problem
● Q: Is the problem of determining when a machine halts decidable?

Halting Problem is semi-decidable: We can construct a ‘Universal Turing 
Machine’ which takes as input a Turing Machine T and a word w, simulates the 
running of T on w, halts if T halts on w and returns the output of T on w.



Halting Problem
Halting Problem is not decidable:

● Suppose the Halting Problem is decidable i.e. there is a Turing Machine 
which takes as input T, w and returns ‘yes’ if T halts on  T and ‘no’ 
otherwise

● Then, there is a Turing Machine H which takes as input T and returns ‘yes’ 
if T halts on w = T and ‘no’ otherwise

● Then there is a Turing Machine J which takes as input T and does not halt 
if T halts on w = T and halts if T halts on w = T

● Does J halt on itself?



Undecidability of Solvability of Diophantine Equations
● Consider a semidecidable set S whose complement is not semidecidable
● S is Diophantine, hence there exist a class of Diophantine equations 

parametrized by a which are solvable iff a in S
● Since the complement of S is not semidecidable, there does not exist an 

algorithm to determine whether even Diophantine Equations from this 
class are solvable



…Exponentiation is Diophantine
● Finding one example of Julia Robinson Predicates would be enough to 

complete the proof
● She considered using Pell’s Equations: 

○ x^2-(a^2-1)y^2=1
○ Solutions (pi, qi) satisfy the recurrence relation 

■ p_i+1 = 2a_p - p_n-1
■ q_i+1 = 2a_q - q_n-1

○ The sequences p_i, q_i are periodic modulo any m, and hence so are their linear 
combinations

○ q_0, q_1… mod (a-1) is periodic with 0, 1, 2… a-2
○ q_0 - (a-2)p_0, q_1 - (a-2)p_1… (mod 4a-5) is periodic with start 2^0, 2^1, 2^2…
○ She showed that if one could find an infinite Diophantine set of a such that the length of 

the first period is a multiple of the second, then one would have an example of Julia 
predicates



…Exponentiation is Diophantine
● This approach has not yielded any solutions, but Matiyasevich was 

inspired by this idea of synchronization of periods to consider the related 
sequence of Fibonacci Numbers at even positions

● Fibonacci Numbers satisfy a_0 = 0, a_2 = 1, a_2i+2 = 3a_2i - a_2i-2
● Sequence grows like ((3+√5)/2)^n, can show that 2^u-1 < u_2i < 3^u
● Hence, they satisfy J.R.
● Remains to show that the equation is Diophantine



…Exponentiation is Diophantine
● The only solutions to x^2 - y^2 - xy = +-1 are consecutive Fibonacci 

Numbers (can be proved via induction). x^2-y^2-xy = 1 gives x = a_2i+1, 
y=a_2i, and x^2-y^2-xy = -1 gives x = a_2i, y=a_2i-1

● Can generalise Fibonacci numbers a_n to phi_m,n given by :
○ phi_m,0 = 0, phi_m,1 = 1, phi_m+1, k = mphi_m,k - phi_m,k-1
○ Which have a similar property for the equation x^2-mxy+y^2=1

● This equals even position Fibonacci numbers for m = 3



…Exponentiation is Diophantine
● Fibonacci Numbers satisfy a_n^2|a_m => a_n|m, which provides some 

sort of relation between a Fibonacci Number and its index
● He also established some lemmas in modular arithmetic:

● Using these properties, he was able to come up with a short list of 
necessary and sufficient conditions for v = a_2u 



…Exponentiation is Diophantine



…Exponentiation is Diophantine



Universal Diophantine Equations
Another result proved by Julia Robinson and Yuri Matiyasevich was that of the 
existence of Universal Diophantine Equations with number of unknowns 
bounded for Diophantine Sets of any Dimension.

● A Universal Equation has the form U(a1,... an, k1,… kl, y1,… yw) = 0 where 
a1,... an are called element parameters and k1,... kn are called code 
parameters

● It satisfies the property that for any parametric equation D(a1,...an, 
x1,...xm), there exists a ‘code’ (k1,...kl) corresponding to D such that 
U(a1,...an, k1,...kl, y1,...yw) when fixing (k1,...kl) and regarded as a 
parametric Diametric equation with parameters a1,...an and unknowns 
y1,...yw, yields exactly the Diophantine Set as D!



Universal Diophantine Equations
● Analogue to ‘Universal Turing Machine’
● It’s easy to see that we can have l=1 by using Cantor Encoding
● But it is also possible to bound w!
● Matiyasevich initially made a rough estimate of 200 unknowns, but they 

later brought this down to 13 and eventually 9.



Open Problems
● Is Hilbert’s Tenth Problem reducible to its restriction to equations of 

degree 3? Is solvability of Diophantine Equations of degree 3 decidable? 
(We know that it is decidable for degree 2 and we have shown that it is 
undecidable for degree 4)

● Do there exist constants d and m such that for every n one can construct 
a universal equation with n element parameters, a single code parameter, 
m unknowns, and total degree w.r.t all the variables equal to d i.e. 
Universal Diophantine Equations bounded in degree?



Extension of Hilbert’s Tenth Problem
“There has been much work on Hilbert's tenth problem for the rings of 
integers of algebraic number fields. Basing themselves on earlier work by Jan 
Denef and Leonard Lipschitz and using class field theory, Harold N. Shapiro 
and Alexandra Shlapentokh were able to prove:

‘Hilbert's tenth problem is unsolvable for the ring of integers of any algebraic 
number field whose Galois group over the rationals is abelian.’”
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