Hilbert’s Tenth Problem

— Determining the Solvability of
Diophantine Equations




Hilbert’s Problems

e |n 1900, Hilbert published a list of 23 problems which were supposed to
be some of the most important problems at the time - i.e. problems that
the 19th century had left for the 20th century to solve

e The first problem (concerning geometry) was solved in 1900 itself using
Dehn Invariants

e Today, only 3 of them are unsolved* (one of them being the Riemann

Hypothesis)



Hilbert’s Tenth Problem

“Given a Diophantine equation with any number of
unknown quantities and with rational integral numerical
coefficients: To devise a process according to which it
can be determined in a finite number of operations
whether the equation is solvable in rational integers.”




Diophantine Equations

e Polynomials in any number of variables with only integral coefficients
e D (X1,x2...xn)=0
e C(Considered solvable if it has integral solutions



Turing Machines

We ask our Turing Machines yes/no questions, or questions of the form
‘does this input belong to a set S in 2*

Given some input, there are 3 possibilities: The program says ‘yes’, the
program says ‘no’, or the program never terminates

A set S is called semi-decidable or recursively enumerable if there exists a
Turing Machine which terminates and says ‘yes' whenever the input
belongs to S. It may or may not terminate otherwise

A set S is called decidable or recursive if both S and the complement of S
are decidable

Church-Turing Thesis: Any ‘effectively computable’ function (in the
intuitive sense) is a computable function (in terms of Turing Machines)



Hilbert’s Tenth Problem is Semidecidable

e List of all possible n-tuples can be generated one-by-one
e Check if each one works
e |Ifthereis a solution, we will eventually find it and the machine will halt.



Hilbert’s Tenth Problem

e Hilbert's 10th problem took 70 years to solve and was the work of mainly
4 mathematicians - Yuri Matiyasevich, Julia Robinson, Martin Davis, and
Hilary Putnam® (the main result in the proof is often called the MRDP
theorem after their initials). They proved that there was no such ‘process’!
(i.e. it is an undecidable problem).

e Completely elementary proof!



Martin Davis, Julia Robinson, Yuri Matiyasevich




Diophantine Equations

Observation 1: Determining whether a system of Diophantine equations is
solvable is equivalent to determining whether a single Diophantine equation is
solvable

D1(x1, ..xm) =0, &... Dk(x1,...xm) = 0 has a solution & D1A2(x1, ... xm) ... +
DkA2(x1,...xm) = 0 has a solution



Diophantine Equations

Observation 2: It is sufficient to find a method to decide whether a
Diophantine equation of degree 4 has a solution

e Introduce new variables and get a system of equations of the form where
each equation is of the form a = b+cand a = bc
e Convert to a single equation



Diophantine Equations

Observation 3: We may restrict to non-negative solutions only

e Reducing from integral to non-negative: D(x1, x2... xn) = 0 has an integral
solution & D(a1-b1, a2-b2...an-bn) = 0 has a non-negative solution

e Reducing from non-negative to integral: D(x1, X2, ...xn) = 0 has a solution
< D(x1, x2..Xxn) =0 & x1=a172 + b1A2+c1A2+d 172 ... & xk=anA2 +
bnA2+cnA2+dnA2 has a solution (from Four-Square Theorem)

Four-Square Theorem: Every nonnegative
integer can be represented as a sum of
four non-negative integer squares




Diophantine Sets

e A parametric Diophantine Equation is a Diophantine Equation D(a1, a2...an,
x1, x2... xm) where the variables are separated into parameters a1, a2... an and
unknowns x1, X2... xm

e By fixing the parameters, we get Diophantine Equations in m variables which
can be either solvable or unsolvable depending on the values of the parameters

e Hence, thereis a set M C N”n associated with every parametric Diophantine
equation in m parameters = set of n-tuples (a1, a2... an) € N”n such that D(a1,
a2...an, x1, x2...xm)=0 is solvable

e Such asetissaid to be a Diophantine Set of dimension n, and the
corresponding equation is the Diophantine Representation of it

e We can also define Diophantine Properties, Diophantine Relations and
Diophantine Functions

e Q: Which subsets of NAn are Diophantine?



Diophantine Sets

Example 1: The property of being an even number is Diophantine (similarly
for odd)

Example 2: The relation <= is Diophantine

Example 3: The relation =/= is Diophantine



Diophantine Sets

Property 1: Diophantine Sets are closed under Union
Property 2: Diophantine Sets are closed under Intersection
Property 3: Diophantine Sets are closed under Projection
We can also use Diophantine functions as terms

Q: Are Diophantine Sets closed under complementation?



Diophantine Sets

Example 4: The function rem(b,c) is Diophantine

Example 5: Divisibility, the congruence relation with respect to a certain
modulus, and the function div(b,c) are Diophantine

Example 7: gcd and Icm are Diophantine



MRDP/Matiyasevich’s Theorem

The class of Diophantine Sets is precisely the
class of Turing Semidicable Sets




Cantor Encoding

Want to encode sequences of numbers

We can encode pairs as follows: (0,0), (0,1), (1,0),
0,2),(1,1)...=0,1, 2, 3,4 ... resp.

i.e. (a,b) is encoded as Cantor (a,b) = ((a+b)A2 +
3a+b)/2

Retrieving the elements:

o a=Elema(c)® Ibs.t (a+tb)A2 +3a+b)=2c
o b=Elemb(c)® Fas.t ((a+tb) 2 +3a+b)=2c

Cantor, Elema, and Elemb are Diophantine
functions : : 5 5

w

»
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Cantor Encoding

e (Canencode (al, a2, ... an) as a single number :

Cantor_n (a1, a2... an) = Cantor (a1, Cantor (a2,
Cantor (a3.... Cantor (an-1, an))))

e an=Elemnm(c) ¢ 3Ial, a2,...an-1,an+1,...am
s.t. 2M2/n) Cantor (a1, a2...an) = 2M27n) ¢

e Each of Elem n,m is a different Diophantine :
function. We want a single Diophantine function i 2 3
Elem (n,m,c) -> use positional encoding instead!




Exponentiation is Diophantine...

e The function b/cis also Diophantine (not at all trivial! This was the last
piece of the proof)
e Assuming this fact, we can freely* use exponentiation in our equations

Julia Robinson, unaware of Davis's work, investigates the connection of the exponential function to the problem, and
attempts to prove that EXP, the set of triplets (a, b, c) for which a = b°, is Diophantine. Not succeeding, she makes the
following hypothesis (later called J.R.):
There is a Diophantine set D of pairs (a, b) such that (a, b) € D = b < a" and for every positive k, there exists
(a,b) € D suchthath > a*.

Using properties of the Pell equation, she proves that J.R. implies that EXP is Diophantine, as well as the binomial
coefficients, the factorial, and the primes.




Positional Coding

Let the code of a1, a2... an be the value of anan-1...a1 in some base b

We will also include b, nin our code

i.e. the positional code of (a1, a2...an) is Cantor_3
(@a1bA0+a2bMN1+...+anb”n-1, b, n)

Given some code (a,b,c) we can retrieve the dth element of the tuple via e
= Elem (a,b,d) ® 3 xyzs.t. [d=z+1 & a=xAd+eb/z+y & e<b & y<b/z]

We now know that these are Diophantine Functions



Positional Coding

We can now easily show the following functions are Diophantine!

e nCm
e m!
e Prime(a)



Positional Coding

We can now easily show the following functions are Diophantine!

e¢ nCm: From binomial theorem, ((b+1)"n, b, n+1) is the positional code of
(nCO, nC1, ... nCn) for sufficiently large b

e m!=Ilim_n->inf nAm/(nCm). Use div on sufficiently large n

e Prime(a) © a>1 & gcd (a,(a-1)1)=1



Diophantine Representation of Primes

D (a, x1, ...xm) = 0 has a solution & (x0 + 1)(1-DA2(x0, ..., xm))-1 =a has a
solution

Tueorem 1. The set of prime numbers is identical with the set of positive values taken on by the
polynomial

() (k+2){1-[wz+h+j-qP-[(gk+2g+k+1)-(h+j)+h-z ~[2n+p+q+z-e]

~[16(k +17-(k +2)-(n + 1P+ 1= pP =[> (e +(a + 1) +1-0°F ~[(a’~ 1)y* + 1 - x?]
-[16ry*@*- 1)+ 1- P =[((a +w'(W' = a)’ = 1) (n +4dy} + 1= (x + cu)] = [n + I + v~y
~[@-1)P+1-mP=[ai+k+1=1=if ~[p+I(@@a=n~-1)+bQan +2a - n*~2n-2)-m]’
=lg+y(a-p-1)+s(2ap +2a - p*-2p -2)~x|* =[z +pl(a — p)+ (2ap - p*~ 1)~ pm]}
as the variables range over the nonnegative integers.

*Degree 25 Polynomial in 26 variables (- every letter of the alphabet)



Positional Coding

Using the prime function, it is now possible to construct the following
Diophantine functions:

Checking if a given code(a,b,c) is valid: a<b”c and b>=2

Concatenation of codes

Checking if two codes encode the same tuple

Repeat (a, b, n) = a(bAc-1)/(b-1)

Applying function on every element of a tuple: given Diophantine function
Fin m arguments, we can construct F[beta] s.t. F[beta](p1, p2... pn, ¢) =
(F(p_11, p_21, ... p_n1), ..., F(p_Tm, p_2m,... p_nm))



Connection to Other Problems

We can now see that a positive solution to Hilbert's Tenth Problem would
allow us to resolve all of these™:

e Fermat’'s Last Theorem: (p+1)A(s+3) + (gq+1)A(s+3) = (r+1)A(s+3) has no
solutions

e (atalan's Conjecture: The only consecutive powers of natural numbers are
8 and 9

e Using Bounded Universal Quantifiers, one can also show that the
Goldbach Conjecture and Riemann Hypothesis are special cases of
Hilbert's Tenth Problem



Connection to Other Problems- Goldbach Conjecture

e 2a+4 cannot be expressed as the sum of two primes & Vz<a+1 Ixy
(z+2=(x+2)(y+2) V 2a+2-z = (x+2)(y+2))

e Then, 3aVvz<a+l Ixy (z+2=(x+2)(y+2) V 2a+2-z = (x+2)(y+2)) is a single
Diophantine Equation which is solvable iff the Goldbach Conjecture is
false



Turing Machines

Consists of a finite alphabet > = s0, s1,s2...sn, an infinite tape divided into cells (each
cell can store one letter), a set of 'states’ Q = g1, g2...gn, and a ‘transition function’ = set
of instructions (= (A,Q,D): Q x X -> ¥ xQx{L,S,R})

We have an initial position on the tape

We have an initial state and two halt states- one corresponding to ‘yes’ and one
corresponding to 'no’

sO is special ‘empty’ symbol and * is left end-marker

The input to the Turing Machine is some finite string written on some portion of the
tape

At each step, our Turing machine looks at the alphabet in the cell it is in, and the state
it is in, and uses the transition function to determine which state to go to, what to
rewrite on the cell, and whether to move the tape head to the left, to stay in the same
position, or move to the right

Input corresponding to (a1l,...an)=<*,0,1,1.,,1,0,1,1..1,0,...0, 1,1 ...1>



Semidecidable Sets are Diophantine

Let the Turing Machine T have number of states = v and alphabet size =w
At any point in the computation, the current configuration of the Turing

Machine can be represented using two tuples:

o (s1,s2,..sm,.sl-1, sl), the Tape tuple; contains the current tape contents
o (0,0,..,...0, 0) is the Position tuple; stores current position (location of i) and i (current

state)
Use positional coding in some base beta, with beta > v, w

Goal: To construct a Diophantine equation D(p, t, x1,...xm) = 0 such that
for valid p, t, the equation is solvable iff T halts with initial configuration

given by p, t



Semidecidable Sets are Diophantine

e Want to construct NextT(p,t) which gives Tape tuple one step later:
o LetA(i,j) = alphabet given by transition function if 0<i<=v, 0<=j<=w are valid
(piecewise-Diophantine equations are diophantine), else j (if i = 0)
o t'=NextT(p,t) ® Iw[t'=A[beta](p,t,w)]
e Want to construct NextP(p,t) which gives Position tuple one step later:
Let pR = pbeta, pL = p div beta, tR = tbeta, tL = t div beta (i.e. tuples shifted* one to the left

or right)
Construct function DQ similar to A above but which takes in as input current position in p,

t, and elements to the left and right in p, t
o p'=NextP(p,t) & Iw[p' = DQ(beta)(p_beta, p, p div beta, t beta, t, t div beta, w)]

(@)






Semidecidable Sets are Diophantine

e Want to define iterated Next i.e. AfterP(k, p, t) and AfterT(k, p, t)

e |f we choose | such that p, t < beta’l-k-2, then we know that currently
<= |-k-2 cells are filled and in k steps, < | cells will be filled, so we can
choose | as size of all our codes

e Construct ‘super-configuration’ pL, pR, pM, tL, tR, tM

e Consider this ‘super-machine’ with multiple tape heads. Can use same
NextP, NextT functions to find next configuration on the
super-machine

e Codes of size kl or (k-1)



Semidecidable Sets are Diophantine

e ' =AfterP(k,p,t)and t = AfterT(k,p,t) & 31, pL, pR, pM, tL, tR, tM s.t.
p, t < betarl-k-2

pR = NextP (pL, tL)

tR = NextT (pL, tL)

<pL, beta, kI> = <p, beta, |> + <pM, beta, (k-1)I>

<pR, beta, kI> = <pM, beta, (k-1)I> + <p’, beta, I>

(analagous statements for t)

p’, t' < beta/l

O o0 O O O O o©°



Semidecidable Sets are Diophantine

D we wanted to construct; set of (p,t) on which T halts: 3k, r s.t.
[Elem(AfterT(k,p,t), beta, r) = final_state]
Initial configuration:
o p=<1,0,0,.>=1
o t=<*0,1..1,01.,1.01,..,1>
o <t beta, a> = <*, beta, 1> + <0, beta, 1> + <Repeat(1, beta, a_1), beta, a_1> + <0, beta, 1>
+... + <0, beta, 1> + <Repeat(1, beta, a_n), beta, a_n>
Final function: combine the above three equations



Halting Problem

e Q:lsthe problem of determining when a machine halts decidable?

Halting Problem is semi-decidable: We can construct a ‘Universal Turing
Machine’ which takes as input a Turing Machine T and a word w, simulates the
running of T on w, halts if T halts on w and returns the output of T on w.



Halting Problem

Halting Problem is not decidable:

e Suppose the Halting Problem is decidable i.e. there is a Turing Machine
which takes as input T, w and returns ‘yes’if T halts on T and 'no’
otherwise

e Then, thereis a Turing Machine H which takes as input T and returns ‘yes’
if T halts on w =T and ‘no’ otherwise

e Then there is a Turing Machine J which takes as input T and does not halt
if Thaltsonw=Tand haltsif T haltsonw =T

e Does ] halt on itself?



Undecidability of Solvability of Diophantine Equations

e Consider a semidecidable set S whose complement is not semidecidable

e Sis Diophantine, hence there exist a class of Diophantine equations
parametrized by a which are solvable iffain S

e Since the complement of S is not semidecidable, there does not exist an
algorithm to determine whether even Diophantine Equations from this
class are solvable



...EXponentiation is Diophantine

e Finding one example of Julia Robinson Predicates would be enough to
complete the proof

e She considered using Pell's Equations:
o xA2-(afr2-1)y~2=1
o  Solutions (pi, qi) satisfy the recurrence relation
m p_it1=2a_p-p_n-l
m q_it1=2a_qg-q9_n-1
o The sequences p_i, g_i are periodic modulo any m, and hence so are their linear
combinations
g_0, g_1... mod (a-1) is periodic with O, 1, 2... a-2
g_0-(a-2)p_0, q_1 - (a-2)p_1... (mod 4a-5) is periodic with start 270, 2A1, 2A2...
o She showed that if one could find an infinite Diophantine set of a such that the length of

the first period is a multiple of the second, then one would have an example of Julia
predicates



...EXponentiation is Diophantine

This approach has not yielded any solutions, but Matiyasevich was
inspired by this idea of synchronization of periods to consider the related
sequence of Fibonacci Numbers at even positions

Fibonacci Numbers satisfya_0=0,a_2 =1, a_2i+2 = 3a_2i - a_2i-2
Sequence grows like ((3+V5)/2)An, can show that 2Au-1 < u_2i < 3Au
Hence, they satisfy J.R.

Remains to show that the equation is Diophantine



...EXponentiation is Diophantine

The only solutions to xA2 - yA2 - xy = +-1 are consecutive Fibonacci
Numbers (can be proved via induction). xA2-yA2-xy = 1 gives x = a_2i+1,
y=a_2i, and xA2-yA2-xy = -1 gives x = a_2i, y=a_2i-1
Can generalise Fibonacci numbers a_n to phi_m,n given by :

o phi_m,0=0, phi_m,1 =1, phi_m+1, k = mphi_m,k - phi_m,k-1

o Which have a similar property for the equation xA2-mxy+yA2=1
This equals even position Fibonacci numbers for m=3



...EXponentiation is Diophantine

e Fibonacci Numbers satisfy a_nA2|a_m =>a_n|m, which provides some
sort of relation between a Fibonacci Number and its index
e He also established some lemmas in modular arithmetic:

Lemma 13. For any numbers j and k, if j<2k+ 1, then

Peek 41— = — @yy (Mod Py - Poktz)-
Lemma 21. For any numbers a > 2, m > 2 and j,

Ym,j = Ya,j (mod m — a).

Lemma 22. For any numbers 1, j and m> 2, if llm -2, then i .= (mod D;
for any numbers d, | and m> 2, if d|m -3, then ¢ .=, (modd).

e Using these properties, he was able to come up with a short list of
necessary and sufficient conditions for v =a_2u



...EXponentiation is Diophantine

Theorem 1. For any natural numbers u and v, in order that the equation v = ¢,
hold, it is necessary and sufficient that there exist natural numbers 1, g, b, m, x, y and
z such that

ull, (35)
v<_l, (36)
Pz —22=1, (37)
g—gh—h =1, (38)
*l g, (39)
[{m—2, (40)

2h 4 g|m— 3, (41)
B—mxy + y* =1, (42)
L] x —u, (43)

2h +glx—v. (44)



...EXponentiation is Diophantine

I was spending almost all my free time trying to find a Diophantine relation of exponential
growth. There was nothing wrong when a sophomore tried to tackle a famous problem, but it
looked ridiculous when I continued my attempts for years in vain. One professor began to
laugh at me. Each time we met he would ask: “Have you proved the unsolvability of Hilbert's
tenth problem? Not yet? But then you will not be able to graduate from the university!”



Universal Diophantine Equations

Another result proved by Julia Robinson and Yuri Matiyasevich was that of the
existence of Universal Diophantine Equations with number of unknowns
bounded for Diophantine Sets of any Dimension.

e A Universal Equation has the form U(a1,... an, k1,... kl, y1,... yw) = 0 where
al,...an are called element parameters and k1,... kn are called code
parameters

e |t satisfies the property that for any parametric equation D(a1,...an,
x1,..xm), there exists a ‘code’ (k1,...kl) corresponding to D such that
U(at,...an, k1,...kl, y1,...yw) when fixing (k1,...kl) and regarded as a
parametric Diametric equation with parameters a1,...an and unknowns
y1,..yw, yields exactly the Diophantine Set as D!



Universal Diophantine Equations

Analogue to ‘Universal Turing Machine’

It's easy to see that we can have |=1 by using Cantor Encoding
But it is also possible to bound w!

Matiyasevich initially made a rough estimate of 200 unknowns, but they
later brought this down to 13 and eventually 9.



Open Problems

Is Hilbert's Tenth Problem reducible to its restriction to equations of
degree 37 Is solvability of Diophantine Equations of degree 3 decidable?
(We know that it is decidable for degree 2 and we have shown that it is
undecidable for degree 4)

Do there exist constants d and m such that for every n one can construct
a universal equation with n element parameters, a single code parameter,
m unknowns, and total degree w.r.t all the variables equal to d i.e.
Universal Diophantine Equations bounded in degree?



Extension of Hilbert’s Tenth Problem

“There has been much work on Hilbert's tenth problem for the rings of
integers of algebraic number fields. Basing themselves on earlier work by Jan
Denef and Leonard Lipschitz and using class field theory, Harold N. Shapiro
and Alexandra Shlapentokh were able to prove:

‘Hilbert's tenth problem is unsolvable for the ring of integers of any algebraic
number field whose Galois group over the rationals is abelian.”
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