
The Word Problem

Group Presentations

● A group is a set of elements G = {g1,
g2…} and a binary operation (.): GxG->G
such that

○ Identity: There exists an identity element 1
such that 1.g=g.1=g for all g in G

○ Associativity: (a.b).c=a.(b.c) for all a,b,c in
G

○ Inverses: for all g, there exists h such that
gh = hg = 1

● Knowing the set of elements and the
operation gives us complete information
about the group

Hence, a common way to represent groups is
using a multiplication table

Multiplication table for Symmetric Group S4

Group Presentations

● A group is a set of elements G = {g1,
g2…} and a binary operation (.): GxG->G
such that

○ Identity: There exists an identity element 1
such that 1.g=g.1=g

○ Associativity: (a.b).c=a.(b.c)
○ Inverses: for all g, there exists h such that

gh = hg = 1
● Knowing the set of elements and the

operation gives us complete information
about the group

Hence, a common way to represent groups is
using a multiplication table

Multiplication table for Dihedral Group D4

However, this description of a group is very large and has a lot of redundant
information. We cannot describe infinite groups at all with this method.

What are some alternate Description of Groups?

● As embeddings in General Linear Groups → Representation Theory
● Group Presentations → Combinatorial Group Theory

Group Presentations

Definition 1: A presentation of a group G consists of

(1) A set of generators g1, g2… such that every element of G can be written as a
product (a “word”) of the generators and their inverses

(2) A set of relations a1=b1, a2=b2, a3=b3… where each ai, bi is a word over the
generators and their inverses

Group presentation is depicted as: <g1, g2… | a1=b1, a2=b2…> or simply <g1,
g2…| a1b1^-1, a2b2^-1…>

Group Presentations

The group given by a presentation is the set of all words in the generators and
their inverses, modulo the equivalence relation given by applying gigi^-1=1 and
the relations in any part of the word, with multiplication given by [w1][w2]=[w1w2]

● Identity: [1][w]=[w]=[w][1]
● Associativity:

([w1][w2])[w3]=[w1w2][w3]=[w1w2w3]=[w1]([w2w3])=[w1]([w2][w3])
● Inverse: [w][w^-1]=[1]=[w^-1][w]

Group Presentations

Group Presentations

Every group has a group presentation:

● Let the set of generators be all the elements in the group
● Let the relations be those given by the multiplication table

We will consider only groups with finite presentations for the remainder of the talk.

Group Presentations

Example 1: <x | x^3 =1 >

● There are three equivalence classes/elements: [1], [x], [x^2]
● Isomorphic to Z/3Z

Group Presentations

Example 2: <x, y | xy=yx>

● In any word, we can rearrange the ‘x’s and ‘y’s to get a word of the form x^my^n
● [x^m1y^n1] and [x^m2y^n2] are distinct for (m1, n1)=/=(m2, n2)
● Group is Z^2!
● {x^my^n} gives a ‘normal form’ for the group

Normal Form: A choice of word in each equivalence class

Group Presentations

Example 3: <x1, x2, … xn>

● Known as the Free group on n elements or Fn
● Claim: The set of words S without any xixi^-1 present in them (‘freely

reduced’) give a normal form for Fn
● Proof:

○ Any word w is equivalent to an element in S: Repeatedly cancel any xixi^-1 present in w.
Cancellation reduces length each time, so the process stops at some point.

○ ‘Diamond’ Argument + A word cannot reduce to two distinct words in S: proof by induction…

Definition 2: Given a group presentation <g1, g2..| r1, r2…>,
the group G represented by the presentation is the Free Group
on {g1, g2…} = <g1, g2…> modulo the Normal Subgroup
generated by r1^-1, r2^-1…

Group Presentations

Group Presentations

Example 4: Dihedral Group Dn

● With generators being a reflection and a rotation:

<r, f | r^n=1, f^2=1, rf=fr^-1>

● With generators being two reflections:

<f1, f2| f1^2=1, f2^2=1, (f1f2)^n=1>

The Word Problem

Q: Given a finite presentation, it’s not always so easy to tell what the group it
represents actually is. In general, how easily can we determine properties of the
group? For instance, is there an algorithm that takes in a group presentation
and…

● … tells us if the group is finite?
● … tells us if the group is trivial?
● … gives us the multiplication table for the group, if the group is finite?

The Word Problem

Q: Given a finite presentation, it’s not always so easy to tell what the group it
represents actually is. In general, how easily can we determine properties of the
group? For instance, is there an algorithm that takes in a group presentation
and…

● … tells us if the group is finite? No!
● … tells us if the group is trivial? No!
● … gives us the multiplication table for the group, if the group is finite? Yes!

(via Tedd-Coxeter coset enumeration)

We will return to the first two questions later…

The Word Problem

Q: For any group presentation, is there an algorithm that…

● … takes in a word and determines if its trivial?
● … takes in two words and determines if they are equal?
● … takes in two words and determines if they are conjugates?

The Word Problem

Q: For any group presentation, is there an algorithm that…

● … takes in a word and determines if its trivial? - No, called The Word Problem
● … takes in two words and determines if they are equal? No
● … takes in two words and determines if they are conjugates? NO

The Word Problem

It is easy to do computations in Free Group, and we showed that any group G can
be written as a quotient of a free group. Hence, it would very useful to know when
a word is trivial in G. This motivates the question:

For every finite group presentation, does there exist an algorithm that takes in a
word w in its generators (and inverses) and returns whether w is trivial in G?

This is called the Word Problem for G.

The Word Problem

In all the groups we discussed so far, the Word Problem was decidable (note that
for finite groups and groups with computable normal forms, the word problem is
decidable)

Using the Halting Problem, we will explicitly exhibit a group G for which the word
problem is undecidable.

Word Problem for Semigroups

Semigroups: similar to groups, but elements need not have inverses.

We can use a similar idea of presentations with generators and relations for
semigroups, with some modifications:

● We consider only positive words (i.e. words with no inverses) on the
generators

● Two words w and w’ are equal if there is a finite sequence w = w1 -> w2 -> …
wn = w’ where wi -> wi+1 is gotten by replacing aj with bj or replacing bj with
aj for some relation aj = bj.

Word Problem for Semigroups

Note that semigroups have a lot less ‘cancellation’ resulting from the relations than
in groups.

<a,b,c | ab=ac> : b = c in the group, but not in the semigroup

<x| x^3=x>: Has three elements when viewed as a semigroup (1, x, x^2) but only
two (1,x) when viewed as a group.

Malcev’s Group: <a, b, c, d, u, v, x, y | au=bv, cu=dv, cx=dy>: ax=by in a group but
not in a semigroup

Word Problem for Semigroups

● The word problem for semigroups is therefore about determining whether two
words are equal rather than determining whether a word is trivial (which are
equivalent in a group).

Using the Halting Problem, we will construct a Semigroup S with an undecidable
word problem, i.e.:

There is a word w in S such that there is NO algorithm which
takes as input a word w’ from S and determines whether w = w’

Word Problem for Semigroups

Recall our conventions for Turing Machines:

● Has alphabet s1, s2… sm and states q0, q1, q2… qn
● Represent tape position using SqiS’, where S is the tape contents to the left of

the current position, S’ is the tape contents to the right and including the
current position, and qi is the current state.

● Can either move left and go to a new state OR move right and go to a new
state OR change current alphabet and go to a new state.

● Only ‘halt’ state is q0.
● s0 is the letter corresponding to a blank space.

Word Problem for Semigroups

We want to reduce the halting problem for Turing Machines to the word problem
for Semigroups. We would like to do this by ‘simulating’ Turing Machines using
semigroups, i.e. for any turing machine T, we want to come up with a semigroup
S(T) such that:

1. S contains words corresponding to the possible configurations of T, including
a special word q for the ‘halt’ configuration

2. If we go from one configuration to another in T, then their corresponding
words should be equal

Since we showed that there exists a Turing Machine T with an undecidable halting
problem, this will give us a semigroup S and a word w such that the Word Problem
for S, q is undecidable.

Word Problem for Semigroups

Attempt at Construction:

● Generating set:
○ s0, s1… sm; q0, q1… qn and q (for the halt configuration).

● Relation for replacing the current letter:
○ qi sj = qi’ sj’

● Relation for moving to the left:
○ sj qi sk = qi’ sj sk

● Relation for moving to the right:
○ qi sj = sj qi’

● Issue when we reach the end of the tape. Introduce new generator ‘h’ that serves as an
end-marker and let word corresponding to configuration c of the Turing Machine be hch

Word Problem for Semigroups

Final Construction:

● Generating set: s0, s1… sm; q0, q1… qn; q, h
● Relations for replacing the current letter:

○ qi sj = qi’ sj’
● Relation for moving to the left:

○ sj qi sk = qi’ sj sk
○ h qi sk = h qi’ s0 sk

● Relation for moving to the right:
○ qi sj sk = sj qi’ sk
○ qi sj h = sj qi’ s0 h

● Relations for halt configuration:
○ q0sj = q0
○ sjq0h = q0h
○ hq0h = q

Word Problem for Semigroups

Want to prove T halts on c iff hch = q in S(T)

● (=>): Follows from construction
● (<=): Consider the sequence hch = w1 = w2 = … wn = q as described

previously.
○ We may assume every word appears only once.
○ By induction, every wi for i<=n-1 must be of the form hcih for some possible configuration ci
○ At cn-1 we are in halt state q0
○ Either ci -> ci+1 or ci <- ci+1 for all i<=n-2, and cn-2 -> cn-1 since cn-1 is a halt state.
○ Since T is deterministic, we have c1 -> c2 -> … cn-1 and this concludes the proof.

Word Problem for Groups

● As we have seen before, we cannot directly use the same presentation to
construct a group with unsolvable word problem, as we would get a lot of
unwanted cancellation.

● How can we stop this?

Word Problem for Groups

● Problem: ‘Too much cancellation’
● Idea: Add a new generator ri for each

relation ai=bi from the semigroup. Set ai = ri
bi ri^-1

● New problem: cannot proceed after the first
step

● Idea: Add an x with relations such that x, ri
can now partially commute with tape
alphabet

● We have, c -> c’ => g(c) -> Lg(c’)R, where L,
R are words in x, ri

● Add t, k to detect whether a word is of the
form LqR or not.

● Claim: T halts on c iff [k, g(c)^-1tg(c)] = 1
Notation: sM = h, (g1g2...gn)# = g1^-1g2^-1…gn^-1 (not inverse of
the entire word!), Fiqi1Gi = Hiqi2Gi are the relations from S(T)
Represent configuration SqiS’ by g(c) = (hS)#qi(S’h)

Word Problem for Groups
(=>):

Lemma 1: c -> c’ in T => g(c) = Lg(c’)R, where
L, R are words in x, ri

This is easily seen from applying (1) and then
applying (2) repeatedly

Lemma 2: g = LqR => [k, g-1tg] = 1

This is easily seen by noting that (3) is saying
that t, k commute with k and ri and hence L and
R. We can use this fact to get some cancellation
and then apply (4).

1

2

3

4

HNN Extensions

For the proof of (<=), we will have to look at HNN Extensions.

If G = <S | R> has two subgroups A, B with isomorphism given by f, then the HNN
extension of G (with respect to A, B, f) is G* = <S, t | R, tat^-1 = f(a) for all a in A>

● G is called the ‘base’, A and B the ‘associated subgroups’, and t the ‘stable
letter’.

We can generalise this idea by allowing multiple stable letters t1, … ti
corresponding to some (A1, B1, f1)... (Ai, Bi, fi).

HNN Extensions

Baumslag-Solitar groups are an example of HNN Extensions.

● BS(m,n) = <a, b | ba^mb^-1 = a^n>
● This is an HNN Extension with Base <a>, stable letter b and associated

subgroups <a^m>, <a^n>

HNN Extensions have nice properties that make them useful in many
combinatorial group theroetic proofs, embedding theorems etc. and they also have
a nice topological interpretation that makes them useful in Basse-Serre Theory.
You can read about this by looking up graphs on groups :)

HNN Extensions

There are two properties of HNN Extensions that we are interested in:

1. Britton’s Lemma: If a word w = g0t
±1g1t

±1... t±1gn = 1 then either n=0, g0=1 or
w contains some tgit

-1 with gi in A or t-1git with gi in B. This kind of tgit
-1 or t-1git

is called a ‘pinch’ and a word that doesn’t contain a pinch is said to be
t-reduced. The analogous statement for HNN Extension by multiple stable
letters holds.

2. G is embedded in its HNN Extension G* (by the obvious embedding g -> g).
Note that this is a corollary of Britton’s Lemma.

Word Problem for Groups

(<=): Notice that our construction is a sequence of HNN Extensions. That is,

Word Problem for Groups

(<=): Notice that our construction is a sequence of HNN Extensions. That is,

Word Problem for Groups

We break the rest of the proof into 3 parts:

1. Suppose g is a word of the form g(c) for some configuration c (i.e. g is of the form X#qiY, where X and
Y are words in si and h), and [k, g-1tg] = 1 in B. Then, g = LqR in B2, where L, R are freely reduced
words in x, ri.

2. If g = X#qiY= LqR (with conditions as described above), then L-1X#qi and qRY-1 are ri - reduced.

3. If L1 and L2 are ri reduced words in x, ri; X, Y are freely reduced words in si and h, and X#qiY= LqR in
B2, then both X and Y are positive and XqjY = q in S(T) (note: we already have that X, Y are freely
reduced and positive)

We will only illustrate how HNN Extensions are used for the proof of (1). They can be used similarly to prove
(2) and (3) with some case-work.

Word Problem for Groups

Proof of (1):

A generalisation: Adian-Rabin Theorem

A Markov Property P of finitely presentable groups is one for which:

● P is preserved under isomorphism
● There exists a finitely presentable group with property P
● There exists a finitely presentable group which cannot be embedded in any

group with property P

Almost all properties we are interested in are Markov Properties: trivial, finite,
abelian, simple, torsion, torsion-free, free, solvable word problem, solvable
conjugacy problem etc.

A generalisation: Adian-Rabin Theorem

Adian-Rabin Theorem: If P is a Markov Property, there does not exist an
algorithm that takes in a finite presentation and determines whether the group
given by the presentation has property P .

This means that the problem of deciding whether a group given by a finite
presentation has any of the properties mentioned on the previous slide are all
undecidable.

This extremely powerful theorem can be proved fairly easily using the group we
have constructed.

Groups with Solvable Word Problem

● Free Group
● Free Abelian Group
● Finite Groups
● Groups with Computable Normal Form

(as we have seen)

● Free Product of groups with solvable word problem

Groups with Solvable Word Problem: Residually Finite Groups

Residually Finite Groups are groups G where for every non-trivial element g in
G, there exists a finite index normal subgroup N of G not containing g.

Another way to state this property is that the intersection of all finite index normal
subgroups is trivial.

These groups have interesting properties and turn up a lot in Combinatorial Group
Theory. Finitely presented residually finite groups have a solvable word problem.

Groups with Solvable Word Problem: Residually Finite Groups

Groups with Solvable Word Problems: Braid Groups

Solving the word problem for braid groups
tells us when a braid can be undone

Groups with Solvable Word Problems: Braid Groups

Garside Normal Form:

● The relations are all positive, so the group can be seen as a semigroup
● Consider the element 𝚫 = σ1(σ2σ1)...(σn-1σn-2…σ1)
● 𝚫 has the property that σi𝚫 = 𝚫σn-i and, for any i, 𝚫 can be rewritten as σiXi

where Xi is some positive word
● Now, in a word from the group we can replace any σi^-1 by Xi𝚫^-1. Then,

using, σi𝚫^-1 = 𝚫^-1σn-i, we can write the element as 𝚫pA for some positive
word A which does not have 𝚫 as a prefix.

● There is a unique way to do this, hence this is a normal form.

Groups with Solvable Word Problem: One-Relator Groups

One-Relator Groups are groups with only one relation.

An example of one-relator groups are Surface Groups, the Fundamental Groups
of surfaces. For a surface of genus g, the fundamental group is <a1, b1, a2, b2…
ag, bg| [a1, b1]...[ag, bg]>. There is only one relation.

One-Relator Groups have solvable word problem.

Groups with Solvable Word Problem: One-Relator Groups

Groups with Solvable Word Problem: One-Relator Groups

Groups with Solvable Word Problem: One-Relator Groups

Groups with Solvable Word Problem: One-Relator Groups

Groups with Solvable Word Problem: One-Relator Groups

More on HNN Extensions: Graphs on Groups

More on HNN Extensions: A Nice Result :)

References

● An Introduction to the Theory of Groups: J.J. Rotman
● Combinatorial Group Theory: Lyndon and Schupp
● Combinatorial Group Theory: Magnus, Karrass, Solitar
● One-relator groups: notes by Andew Putman
● Basic results on braid groups: González-Meneses

